
FOUNDATION OF A KNOWLEDGE REPRESENTATION SYSTEM FOR IMAGE UNDER-ETC(U)
OCT GO L VAINA, S CUSHING N00039-79-C-0457

UNCLASSIFIED HOS-TR-27 NL

EMMMMEEMEEMmI

EhEhhEEEI

*EEEEMEEEEEEEELE

HIGHER ORDER SOFTWARE, INC. 'jUm (806 Massachusetts Avenue

Cambridge, Massachusetts 01239

iEVi
TECHNICAL REPORT NO. 27

FOUNDATION OF A KNOWLEDGE REPRESENTATION SYSTEM
FOR IMAGE UNDERSTANDING

OCTOBER 1980 ". j

bgOTON STA1~ A,
Apptovd for pubbe release;

- Final Report Prepared for
Department of the Navy

Naval Electronic Systems Command

81 3 04 038

NOTICES

Copyright Q1980 by
HIGHER ORDER SOFTWARE, INC.

All rights reserved

No part of this report may be reproduced in any
form, except by the U.S. Government, without writ-
ten permission from Higher Order Software, Inc.
Reproduction and sale by the National Technical
Information Service is specifically permitted.

4

DISCLAIMERS

The findings in this report are
not to be construed as an offi-
cial Department of the Navy
position, unless so designated
by other authorized documents.

The citation of trade names and
names of manufacturers in this
report is not to be construed
as official Government endor-
sement or approval of commer-
cial produces or services
referenced herein.

DISPOSITION

Destroy this report when it is no longer needed.
Do not return it to the originator.

-v-~~f ,. .

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE Mhen Data Ete..dl

REPOT DCUMNTATON AGEREADOINSTRUCTIONS
REPOT DCUMNTATON AGEBEFORE COMPLETING FORM

2. GOVT ACCESSION NO. 3. RECIPIENTS CATALOG NUMBER

, 4, eSubtonle f I - n i R pOR t"I E ID O E E

Foundation ofa Knowledge Representation May -Au -
S'System for Image Understanding W a l~i -AgI 8,

_ G. _VA RF"RMINGii)RG. -REPORT NUM6

-7.'4 UTHOR(,,-.- 8. CONTRACT OR GRANT NUMBERfs)

Lucia Vainai Steven/Cushing 4- ,&'39-79-C-'457 .

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT TASK

Higher Order Software, Inc./ AREA & WORK UNIT NUMBERS

Post Office Box 531, 806 Massachusetts Avenue
Cambridge, Massachusetts 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 1

Department of the Navy Oct 8
Naval Electronic Systems Command A. WUMB.= OF G °

Washington, DC 20360
14. MONITORING AGENCY NAME & ADDRESS (if ifferent from folling Office) 15. SECURITY CLASS. jof this reportl

Unclassified

15a. DEC LASS IF ICATION/DOWNG RADING
SCHEDULE

16. DISTRIBUTION STAIEMENT (of this Report)

Approved for public release, unlimited distribution.

17. DISTRIBUTION STATEMENT (of the abstract entered in E;ock 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reves ,ie if neery and idet.:fy Dy block numbe)

knowledge representation, image processing, image understanding,
possibility theory, fuzzy algorithms, quantifiers, semantics areal coordinate
systems

20. ASSI RACT (Continue cn reve'se sioe , neces, anyo idenvY, cy block numberl

/The basis of a knowledge representation system is presented that is
able to recognize real-world objects from partial information delivered
by human or mechanical "experts", each of which is assumed to have its
own information-processing tasks. The system deals directly not with the
real world, but with the outputs of the experts' processing, and consists
of three component parts, a descriptional component, a category component,
and a functional component, in each of which knowledge is structured and
accessed from general to specific, making it possible to access exactly -J

DO FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE
1 JAN 73 Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (Wnen Dots Enwt~e" '

Uncl assi fied
SECURITY CLASSIFICATION OF THIS PAGE (Wmn Daza Enwed)

as much information as is desired at an appropriate level of detail.
Uncertainties are dealt with through the use of possibility theory, which
also provides a means for approximate pattern matching. The knowledge
representation language includes the use of trivalent quantifiers, whose
semantics is explained and elaborated. Areal coordinate systems based on
hexagons and squares are examined as possible alternatives to the standard
use of bands in image processing.

Unclassified
SECURITY CLASSIFICATION OF THIS :PAGE (,;'en Dim En'vre)

TABLE OF CONTENTS

t

SECTION PAGE

9
1.0 INTRODUCTION....................................... 1

2.0 THE OBJECT-VIEWS-SYSTEM 3

f
3.0 THE SEMANTICS OF TRIVALENT QUANTIFIERS 27

4.0 IMAGE ANALYSIS 39

5.0 AREAL COORDINATE SYSTEMS FOR PLANE DECOMPOSITION ... 45

REFERENCES 91

F AcceZsiof n or

NTIS GFA&l
pT1C TAR

Uaioutce ~ C3

:D iit

1.0 INTRODUCTION

Our overall goal here is to present the basis of a knowledge represen-

tation system able to recognize objects in the real world from partial

information delivered by various experts.

The first hypothesis is that there is a set of experts, each

having his own information processing tasks; these experts process

information from the outside world in their own way and then convey it

to the knowledge representation system.

Thus, the knowledge representation _, tem does not deal directly with

the world, but with inputs that are outputs of the experts' processing.

We shall call our system object-views-system (O'S). The information

processing task of OVS is to put together the various kind of input

information delivered by the experts, to choose among alternatives, to

recognize the objects in the world as completely as possible.

We consider that an object, together with its shape, position and

location, is characterized by its functionality, by the action it can

perform or how it can be acted upon.

Our system has three distinct parts: First, the descriptional part,

where the experts information is represented and combined by means of

possibility distribution theory.

Second, the category part, which is a kind of skeleton of the archi-

tecture of the system. The category part contains classes of objects,

and accesses the more particular information. This is useful for

holding the system together, for computing similarity between objects,

for quickly retrieving desired information in as detailed a form as

necessary.

?I

Third, the system has a functional part , where the functionality,

the use of the objects, is represented. In the functionality part

is represented are the options the object is capable of being used for.

Why is OVS interesting? As a result of the fact that knowledge is

structured and accessed from general to particular, OVS provides a

means to access as much information as necessary, and to stop at the

desired level of detail.

Due to its three component parts, OVS gives complete information about

objects in the world, and the modularity of the represention makes it

very efficient. Provided that one knows roughly what he is looking

for, he can access the relevant module. OVS does not rely on much

prestored information. Thus the user need not put much world

knowledge into the system. OVS is a recognition system fed by the

experts. Relying on possibility theory, OVS has the advantage of

dealing with the uncertainties of the real world and provides

approximate pattern matching. Of course, the approximation is deter-

mined by how much precision is needed to carry through the current

computation.

In Section 2, we discuss the OVS system itself, its structure and how

it works. In Section 3, we discuss a unique feature of our knowledge

representation language, namely, its use of trivalent quantifiers,

whose semantics enables us to use expressions like all ships, only

submarines, also aircraft carriers, and so on, in a manner approxi-

mating that of ordinary English. In Section 4, we give examples to

illustrate how an expert in our system--e.g., radar--works. In

Chapter 5, we investigate how the efficiency of our experts may be

improved by introducing hierarchical areal coordinate systems that

replace the bands standardly used in decomposing planar images, and

assumed in earlier sections, with hexagons or squares, which provide

regular coordinate areas and a natural structure to the decomposed

plane.

2

2.0 OVS SYSTEM

Our goal here is to present the computational constraints involved in

the design of a knowledge representation system which is considered to

be the basis for the development, in the next couple of years, of

concrete higher-level methods of efficient plan generation, goal

achievement, goal correction, domain-dependent and goal-oriented

question-answering, etc. The last part of the research plan envisaged

shall focus on the design of constraints for computer-based; languages

which would embody the above theoretical results.

Accordingly, (following Marr [1]) we have differentiated thtree

levels for the research. The highest level is the level of the com-

putational theory, which is a theory of the overall computation. This

level is crucial; its study determines what the computatiotwal

problems are that have to be solved and why they are neededi.. At this

level we shall not be concerned with the details of algorit hms that

must ultimately implement the computational theory.

The next level is the level of the algorithms that are determined

by the problem, and the mechanisms involved in carrying them out.

Many algorithms that can be designed to carry out the same

computation, and the choice of which one to use depends on the mecha-

nisms that are available. The mechanism are usually deternined by the

nature of the hardware, which constitute the third level.

A great deal of research in Artificial Intelligence (AI) has started

with the algorithm level, without worrying about the nature of the

computation that the algorithms carry out. The algorithms are not a

deep property of a computation, yet the implementation is iimportant

because, on the one hand, it reveals details that are not observed

during the elaboration of the theory, and, on the other hamd, this is

what the user requires: to be able to use the computer to do the job

3

that he cannot do, or that it would be too expensive, or too compli-

cated, for him to do.

Our general research problem is understanding images. What is given

is many types of partial information about the real world delivered

via several channels. We shall call such specific ways of delivering

information about objects expert-based information. The expert-based

information is complete from the point of view of each expert, but it

is specific, partial information about the real world. Experts can

be man or machine, each having some specific knowledge or area of

expertise. We can not evaluate the expert's expertise before we have

the general representation, and within this framework we could pose

problems like improving the expert's skill; in other words, what

is needed from the expert to give more complete relevant and useful

information to the recognition system? This is an interesting

theoretical and practical 1 eblem. The basic question would be what

is the number of experts needed for obtaining enough information for

recognition tasks? Is it more useful to have many experts with a

little domain of expertise? Or it is better to have as few as

possible, with a wider area of knowledge? To answer these questions,

one needs to take into account the real-world possibilities. For

example, if we consider the radar as one of the experts, and we know

what information it delivers, we have to ask the question: how useful

is this information? How can it be improved? What other experts

must cooperate with the radar in order to deliver the most useful

information? How reliable is the radar information? How well does it

communicate with other experts? By this last question we mean what

are the experts which understand information delivered by radar? Are

the experts communicating with each other, or are they delivering

their information to a central processor which goes through the pro-

cess of putting everything together?

Our hypothesis is that each expert has his area of expertise, and has

his own way of obtaining information, which, guided by the needs of the

4

system, he delivers in an intelligible way. By an intelligible way we

mean the fact that the expert's response, or output, is cast in the

mold offered by the system. Thus, many times, more than one expert

will answer the same question in his own way. This gives the central

system the possibility of contrasting and comparing the information.

What we have to do is to recognize the real-world object corresponding

to this expert information and design a representation which will

be useful for such tasks as computing the similarity between objects from

the representation, and identifying only some prerequisite objects,

such as destroyers or submarines, for example. The representation

must be capable of allowing higher-level tasks involving reasoning,

problem solving, etc., to be performed.

Theoretical Basis for Our Research

Given what we want to achieve, i.e., to understand images, and the way

in which we argued that the research must proceed (on the com-

putational level and on the algorithmic level) we believe that the

most appropriate tools would be those offered by artificial intelli-

gence approaches and by possibility theory, or fuzzy sets in general.

What makes our research unique is our use of both these sets of tools,

and their application on both levels of investigation.

Most A! research in representation of knowledge concerns level two of

the approach, the algorithm. We rely mostly on theoretical ideas laid

down by Marr [23; Marr and Poggio [3], Marr and Ullman [4], who pro-

vided a computation theory for low-level vision.

Our problem is different, however; we do not try to understand vision

in general, nor do we worry about the human visual system. Our goal

SA

is to understand images. The overall picture of the world that we

are moving in is that of expert's information about the real-world

(ex. radar image, etc.). Thus, the input information to our problem

is preprocessed information by specific experts. What we want to do

is to recognize the objects in as much detail as is needed for the

current purpose, to predict their actions, to describe their state,

and to predict their next state. The amount of data involved might

be extremely large. This leads us to the second tool - fuzzy sets

and possibility theory. On the level of computation we shall use

possibility theory to master the huge amount of information and avoid,

getting cluttered in useless detail. On the level of the algorithm

we shall deal with fuzzy algorithms. A "fuzzy algorithm" is "an

ordered set of fuzzy instructions which upon execution yields an

approximate solution to a specific problem" (Zadeh [51). Fuzzy

algorithms are extensively used in everyday life, when one drives a

car, searches for an object, cooks food, etc., and also more

abstractly in pattern recognition and decision making.

The Representation Issue

Criteria for efficient recognition:

Marr and Nishihara [6], in their study of how to represent three-

dimensional shape information, laid down the following three criteria&

to be satisfied by a representation in order for it to be useful for

recognition.

(1) Accessibility, (computability)

The representation should be easy to compute from the image.

(2) Scope and uniqueness

6

The representation is used for recognition, so the description

of a shape must be unique.

(3) Stability and sensitivity

To be useful for recognition the degree of similarity between

two shapes must be reflected in their descriptions, but at the Same

time small differences must be observed. Stability is increased by

using a lower resolution. This leads to the idea of a hierarch.ical

representation as we shall see later.

The representation

The representation should provide a description of a shape that 'is

unique. Thus, we have to have a canonical form for the representation.

A canonical form is a computable function which transforms any ewpression

"a" into a unique equivalent expression f(a) such that for any tiwo

expressions al and a2, a1 is equivalent to a2, if and only if f(:E 1) is

equal to f(a2). With such a function one can avoid the combinatorial

search for an equivalence chain connecting the two expressions arnd

merely compute the corresponding canonical forms and compare theem for

identity. Thus the canonical form provides an improvement in ef"ficiency

over having to search for an equivalence chain for each individual case.

For this we have to assume that the function f is effectively

computable.

Definition: A function f is computable if and only if there is ain effec-

tive procedure which, given an n-tuple (x1...xn) for its variabl"es, will

produce f(xi...xn).

It is useful to remember that the following conditions on a func:tion f

are equivalent:

7

(a) f is computable

(b) when viewed as a relation f is a decidable relation.

Design of the Representation

Primitives:

The complexity of the primitives used by a representation is

constrained by the type of information that can be derived reliably by

nrorpsinn pnrior to the representation. Thus, in the case of the

radar-expert we include that its output information, i.e., the values

for the length, orientation, width, and velocity. An important point

here is that size and similarity are crucial aspects of a

representation's primitives that influence the information it makes

explicit. Thus, information about features much larger or much more

general than the primitives used is difficult to access since it is

represented only implicitly in the configuration of a large number of

smaller or more detailed items. On the other hand, features that are

much smaller than the primitives are omitted from the description

because they are totally inaccessible.

Modularity:

An important question is how the information is organized by the

representation. All that is needed for a representation is some scheme

of associations, together with a set of information processes, that will

extract the appropriate information about connections. The main struc-

tures to provide appropriate direct representation of most things of

interest to us are:

1. List structures. Lists are symbol structures constructed from a

single relation (next, or prior) linking one symbol token with the next.

Some of the symbols in a list can contain symbols that are lists.

Thus, a hierarchical structure of lists can be built up.

8

2. Attribute-value associations. These structures contain sets of

attributes and values, which are both symbols. The attributes have a

unique value in each association. There are many possibilities, from no

organization at all to fancy modular organization. A modular organi-

zation seems especially suitable because, as Marr [7] puts it, it

can make sensitivity and stability distinctions explicit, by arranging

for all constituents of a given module to lie at roughly the same

level of stability and sensitivity.

We consider a hierarchical representation, from general to particular.

Coordinate system

The importance of the coordinate system used by the representation was

well argued in Marr & Nishihara [6], Marr [8], Vaina [9] and Marr and

Vaina [10]. Basically we have two types of coordinate systems:

(1) Viewer-centered locatipns are specified relative to the viewer;

(2) Object-centered locations are specified in a coordinate system

defined by the viewed object.

Viewer-centered descriptions are easier to produce but not very suc-

cessful because they depend on the vantage point from which they

are built. Thus, one has to test distinct views on distinct objects,

and this is very inconvenient, requiring a very large store in memory.

An alternative to this is to use object-centered coordinate systems and

to focus on the computation of a visual description which is independent

of the vantage point. This involves finding the axes for the represen-

tation. We propose to have a combined hierarchical representation

object, centered on the top of the hierarchy and having slots, with

viewer centered information attached at the bottom. Thus, we envi-

9

sion an object represented by a set of views, which form the object-

views-system

(OVS).

Accessing the Information:

One of the most important design questions facing a recognition system

concerns how to structure the knowledge base of facts and rules so

that ap.ropnriat items can be efficiently acccessed. This question

has two parts - firstly, it refers to an appropriate indexing system,

and secondly, it refers to the way of accessing the information. Our

system is a recognition system, and thus involves two things: (1) a

collection of stored representations and (2) various indices into the

collection that allow a newly derived representation to be associated

with one in the collection. In finding an object in the represen-

tation, first, a small set of elements is retrieved, so designed as to

fit the specification for what is being sought. This is followed by

a "read" matching process in which each candidate is matched against

the retrieved pattern, using different mechanisms.

Indexing:

How many types of links are needed? In most Al systems for knowledge

representation there is the assumption that both for retrieval and

for matching, a resourcing is a single set of links among the data.

This hypothesis that a single set of links is enough to handle all the

tasks of the system is also basic in systems that use complete

indexing, or Conniver, or Lisp. Systems like KRL [11], on the other

hand, have a built in associative link system used only for retrieval.

Our system is conceived as having an indexing mechanism which allows

the user to catalog any item under a key.

10

We classify the objects represented hierarchically according to the

precision of the information they carry, and the index is based on

this classification. Thus, the top-most level contains the most undif-

ferentiated representation available. Lower in the hierarchy the

representations become more differentiated. Thus, we differentiate

between sh and islands. When a new object is identified, it

is related to a representation in the collection by starting at the

top of the hierarchy. The more information is derived, the more spe-

cific we get in the representation. When, sometimes, a part of an

object is recognized, then a reverse-index provides informAtion about

what the whole object is likely to be. The reverse-index plays a cru-

cial role in our representation system, because there are many sources

of identification (experts), each delivering partial information.

There is another type of index, index by default , which provides spe-

cific information about the object before its representation was

derived from the expert's total information. Thus, the index by

default accesses hypotheses as to what the object could be, or in the

event that the object should be A, then the al, a2 identified would be

B. This index by default is very important for speeding up the

recognition of an object, before its actual recognition from the

information delivered by the experts.

It may be useful to construct other indices, like cross-indices,

which access information conditionally, etc., but this lies out-

side of the scope of this report.

The main point of this section is to suggest that we view recognition

as a gradual process proceeding from the general to the specific, which

constrains the derivation of the description of the object from the

information delivered by the experts. The information available for

establishing the correspondence between the object and the model

increases as the recognition process procedes: it starts with very

little and very general information, and grows with each new step.

11

Pattern Matching:

Usually a pattern-matching process involves a pattern describing some

requirements and a datum. Descriptions can be" viewed as symbolic

property lists. Each property refers to a different universe of

discourse. Each element in the datum expressing a property is matched

with an element in the pattern expressing a property referring to the same

universe of discourse. The purpose of pattern recognition is to

assign a given object to a class of objects similar to it. Zadeh [12],

......... tha su a cl ass is often a fuzzy set F. A recognition

algorithm, when applied to an object p, yields the grade of membership

F(p) of p in a class F.

One of the most attractive ways of defining a fuzzy pattern class is

to assign to each class a deformable prototype. The grade of mem-

bership of a given object in the class depends on the deformation

energy necessary to make the prototype close to the object and the

remaining discrepancy between the object and the deformed prototype.

Kotoh and Thiramatsu [13] propose an interesting approach for the

representation of fuzzy pattern classes. A feature is viewed as a

fuzzy partition of the pattern space, and each member corresponds to a

fuzzy value of this feature. For instance, if the possible fuzzy

values of the feature "size" are "small", "medium," and "large,"

those values realize a fuzzy partition provided that the orthogonality

condition I small(m(P)) + Pmedium(m(p)) + -"large(m(P)) V , jp.

A fuzzy pattern class is expressed by a logred expression of feature

values which correspond to different features: for instance, the class

of objects whose size is "medium", width "narrow", and weight "heavy".

Let F for example be a fuzzy pattern class defined by the fuzzy

feature-values F1 , F2,...Fr where Fi is a fuzzy value of feature i.

An object p is thus characterized with respect to the class F by a

12

membership value JFi(mi(p) denoted /i(p) for simplicity. PF(P) is

then built by aggregating the/Ui(p) in some manner. For example an

interesting way would be a subjective aggregation where features are

of unique importance. The choice of an aggregation depends upon the

scope of the matching. There are several fuzzy pattern classes

Fl,..FS and the recognition problem is to assign a given object p to a

definite class.

In presenting the model, we shall consider its structural and

computational hypotheses.

Structural hypotheses concern the layout or configuration of information

that is prestored in the representation. They address the representa-

tional problem: how is knowledge represented?

Computational hypotheses concern processes that locate, transfer,

transform, compare, or modify symbols in the structure of the

representation.

The Object-Views-System: An expert-based knowledge representation

system.

A basic principle of our knowledge representation system shall be

the need for modularity. We represent knowledge as collections of

separate, simple fragments. This idea exists already in many AI

knowledge representation systems, such as frames [14], "thread memory"

[14], [15], or Hendrix's system [16]. A view is a data-structure for

representing an object or a situation. A view is a network of nodes

and relations that is loop free. The meaning of the relation defines the

relational module in the system. Thus, in the case in which the rela-

tion is "is-a", we would be in the category module; when the relation

is "used-for", we are in the functional module, and when the relation

is "has-is" we are in the descriptive module. The descriptive module

13

is the most in contact with reality. Thus, it contains information

delivered by the various experts. The information in the descriptive

module is stored in the form of attribute-value associations. The

information in the category module and the functional module is

stored in the form of lists. The common rule for each module is that

the information is stored from general to particular, i.e.:

(a) In the descriptive module, the object has, first, the properties

inherited via the category module, from a more general term; and

only after exhausting these does it have its current properties.

(b) In the category module, we have the information stored from

general to more particular, through the relation "is-a".

(c) In the functional module, we have first the more general uses

and then the more specific ones. Representing uses is achieved by

representing the actions in which the object can be involved. The

elements of the functional modules are similar in the represen-

tation to Minsky's frames [17]. The top level represents things

that are always true about the supposed object or situation. The

lower levels have many slots that must be filled with the speci-

fic instances. The values given to the slots actual represen-

tation. Thus, we could say that, before the identification of the

object and its function, we have "views-types", which become
"views-tokens" after the identification. When reasoning is

carried through the representation, planning, etc., it happens

on both levels - in the type and token views level. Reasoning

developed on the "view-types" informs about the general plan,

or strategy. Reasoning developed on the "view-tokens" informs

about what really is obtained. Reasoning on types gives "types

of reasoning", like various plans, etc. Reasoning on tokens
is more difficult, because it is more specific with more data

and conditions. Each "reasoning-chain-token" belongs to one

14

or several "reasoning-chain-types." Each slot can specify the

conditions that must be satisfied by its assignment. This speci-

fication is made by markers.

Collections of related "views" constitute multiple-descriptions or

multiple-functions, depending on the module we are in.

The skeleton of the representation that keeps everything together

is the category module. However, we may want to keep track of the rela-

tions between the elements in this module too. Thus, we shall define a

relation which displays the similarity among the members of a category.

As might be expected this relation will be a possibility-distribution,

and, given the universe of discourse, will show how its elements are

refinement, or a participation of a more general form.

The most important role of the skeleton is to provide a replacement

view, when it turns out that the proposed view is not a suitable
representation. This is done by a matching a process controlled by the

information associated with the "view", and by the system's current

goals.

Constraints

I. In general we are provided only with partial information about the

object or the situation. Based on this partial information, the

representation must be evoked. Thus, we must provide a means to

reconstruct the object from partial information about it.

II. The process of recognition is goal oriented; thus, the system has

several procedures, one (or a class) of which is considered the

current goal of the system. This is used to decide which terminals

and conditions must be made to match reality.

15

III. Some of the terminals need "adjustment". This means that they can-

not retain the default information and must have new values

assigned based on current information.

IV. Redundant information is used in the representation system to trade

off memory space for computation depth. The choice for where to

put redundancy influences the structure of the representation and

influences the mode of search and deduction.

Remark

By providing this modular representation, we avoid the declarative vs.

procedural dilemma for the data structure. However, this question would

come up only when we would be closer to the programming level.

Principles for effective communciation

We have seen that the data base in the descriptional module is provided

by the experts. Our representation relies very much on the expert's

expertise in detecting and transmitting some specific information.

The experts are supposed to furnish information with some degree of

approximation or tolerance. This degree depends upon their expertise,

or the need for precision in the information. There are a few prin-

ciples [18] which the experts should follow in order to be efficient

and reliable informants, as follows:

(1) MANNER: Be perspicuous

1a: avoid obscurity of expression

Ib: avoid ambiguity

Ic: be brief

Id: be orderly

16

j.

This can be rephrased as instructing speakers and addressees to use,

and interpret each other as using the same language. This means, for

us, that the various experts' messages must be expressed in a language

compatible with the knowledge representation language. When ambiguous

expressions are used, they should be treated as having just one

m,eaning and not different meanings. By "be orderly", different

things are meant in the temporal domain and in the spatial domain.

RELEVANCE: be relevant

QUALITY: try to make your contribution one that is true.

(a) do not say what you believe is false

(b) do not say that for which you lack adequate

evidence.

A simplified version of this principle would be the following:

(2) QUALITY: say only that which you know is most suitable for the

question you want to answer.

(3) QUANTITY: (a) make your contribution as informative as is

required for the current purposes.

(b) do not make your contribution more informative than

is required.

These principles, called "maxims for conversation" [19] shall be ela-

borated more in detail in a future report where we plan to consider

the contribution of experts and their interaction.

How to deal with so many sources of knowledge?

The descriptional module contains information delivered by various

experts - humans or machines. How is this information to be stored

17

the most usefully? In general, that there are two types of knowledge

representation models: network and set-theoretic models. Network

models, exemplified by the work of Collins and Quillian [20],

Rumelhart [21], Lindsey [22], Norman [23], Hendrix [16], Vaina and

Greenblatt [14], Vaina [15], Fahlman [24], etc. assume that words and

their conceptual counterparts exist as independent units in the

representations connected in a network by labelled relations. In the set

theoretic-models, concepts are represented by sets of elements. We

make the assumption that the features associated with a given category

vary in the extent to which they define the category. This helps us

to keep the number of features manageable, and also to operate with

some kind of "basic features." We consider as basic features, the

features which are relevant to the recognition or identification of

the seen object.

However, we can consider a variation in the defining quality of the

features; some characterize the object more relevantly than

others. These features are not totally independent. Thus, if the

value of the size of the object is small and the value of location

with respect to the perceiver very far, then the value of size is

kept as questionable until more information is obtained; or until the

proportion between the values of location and size can be computed.

Thus, we shall consider the description module as a set theoretical

representations of knowledge. In fact, it forms a matrix;

the columns consituting the features, and the row, the experts.

Thus, each element in the matrix is a value associated by an expert with

a feature. How do we take into account all these values? We propose

to consider the name of the feature. Are the name of the variable in

the possibility distribution theory and the values associated by the

experts or of the possibility distribution?

Now, if X is a feature, taking values in a universe of discourse U,

then by the possibility distribution of X, denoted byTrX, is meant the

18

fuzzy set of possible values of X, with the possibility distribution

functionlrX: U .[0,1] defining the possibility that X can assume

a value u. Thus,

x (u) = Poss [X = u].

with rX(u) taking values in the interval [0,1].

To connect the possibility distribution to fuzzy sets, Zadeh for-

mulates the following postulate [25]:

Possibility Postulate : In the absence of any information about X

other than that conveyed by the proposition,

p = X is F

the possibility distribution of X is given by the possibility assign-

ment equation

Tx = F.

This equation implies that

7fx(u) =PF(u)

where F(u) is the grade of membership of u in F, i.e., the degree to

which u fits one's subjective perception of F. In the case of a pro-

portion P-= N isF, we associate a possibility assignment equation

7x = F, where X is a variable that is explicit or implicit in N.

Thus, we have

N is F r.7,x = F

When X is implicit in N, then the possibility assignment equation

first identifies X, and second characterizes its possibility

distribution. Thus: p = "Enterprise is a big ship." X might be

19

X = Size(ship(Enterprise)).

and then the possibility assignment equation

7Tsize(ship(Enterprise)) = BIG.

This formalism is interesting because, aside from the fact that we can

cope with vagueness, it enables us to establish the referent and the value

of the features with respect to the referent. There, the referent is
"ship", which is rather general. In the category module we see that a

subclass of ships could be "fishing boat", and we see that the value

of the feature could change. Thus, we would have,

X = size(fishing boat(Enterprise)).

size(fishing boat(Enterprise)) = very, very big.

In the case of features whose values depend on each other like the

example with size and location, we can use a conditional possibility

distribution [26]. Thus, if X and Y are~variables taking values in U

and V, respectively, then the conditional posssibility distribution of

Y given X is induced by a proposition of the form "If X is F then Y is

G," and it is expressed as J(Y/X),

7T(Y/X) (v/u) = Poss{Y = v I X = u},

where we express the conditional possibility distribution function of

Y given X. X is considered to a more defining, basic, or

principal feature than Y. If the distribution function of X is

known, as well as the conditional distribution of Y given X, then we can

build the joint distribution function of X and Y by:

'(X,Y)(u,v) :7rx(u) A 7T(Y/X)(v/u).

20

Efficiency:

We have seen earlier, that the principle of quantity requires us to

make the information as detailed as needed. Thus, if the goal is to

detect ships, the experts need not convey detailed information

about islands, or restaurants on islands. But, the information required

varies with the current goals of the system. How could this be handled?

Following Vaina [27], we propose the following: Let A = A1 , A2 be a

set of terms labelling such features as size, location, height, etc.
m

Every AiCi (l,h) is represented by a set of terms Ai = 7 Aij

(l,m) and Aij takes values in a universe of metadiscoursle=abelled by

ij, Vij = i j Aij. By the universe of discourse we take here the real

world data, the domain of values of the features as they are asso-

ciated by experts. We will call the real world information OL-1

(object language 1), and the set of features OL-2. The metalevel ML m
is the common metalanguage for OL-1 and OL-2. Thus, if Ai = Size = z

Aij = {big, small, medium, not too big, not too small, etc.}, and the l

universe of discourse in OL-1 would be the interval [0, 1000] feet.

The metalanguage mediates the relation between OL-2 that is the set of

characteristic features used by the system and the experts to charac-

terize the object, and OL-1 the real world data perceived by the

experts. We consider that the "tolerances" used by experts are

sensible.

In general, the goal of the system selects a subset of OL-2 that is

relevant. The experts associate values for each feature required.

Thus, the input to the system would be a possibility distribution

associated as a value with each feature.

Sometimes, the goal - as in a problem solving situation - is to select

those real-world objects which have some desired value of the relevant

features. For example, if the feature one looks at is size, and the

21

question is to select those objects in the real world whose size is big,

then the experts, after evaluating the object from the point of view of

size, have to express to what degree it can be considered "big." This

computation is carried out on the level of metalanguage ML, where the

system attributes a desired value to each feature, and the expert shows to

what degree the object satisfies the requirement when perceived and eva-

luated through the expert's expertise.

Functional Module:

The "views" in the functional module represent objects categorized by

their stereotypical uses. They contain slots, which can be filled

with other expression fillers which may themselves be "views." Thus,

we might have a "view" representing a typical "aircraft carrier" with

slots like "airplanes", "owner", "location", etc. A particular
"aircraft carrier" is to be represented by an instance of this "view,"

obtained by filling in the slots with specific information. Thus, the

top level contains general information about "aircraft-carriers", and

then, the lower levels are specific to the extent that a particular ship

represented is an "aircraft carrier." The system gets this particular

information from the experts, who perceive the real-world information

and process it using their expertise. The name "aircraft-carrier,"

for example, is in the category module and a pointer goes from it to

the specific views in the "functional module." Thus, what one knows to

start with is that the "aircraft-ca-rier" is a kind of ship. Then to

find more information about what this means from the functional or use

point of view, one goes to the related "views-system" in the function

module, and to the information in the descriptional module, looking

for what the experts know in their representation about

aircraft-carriers. Then all this knowledge is

made active, and the system might try either to identify the
"laircraft-carriers" in the real world, or to answer questions about

them, etc.

22

Another way of looking at the views in the functional module is as

bundles of properties. Thus, an aircraft-carrier can be represented

as x(airplanes(xl,Y 3) of.... where the free variables Y1 , Y2...

correspond to the slots. The slots' information is represented in

the descriptional module in the expert's universe. We have seen how we

deal with knowledge represented by more than one expert. "x" is the

identifier of the -expression, it gets bound to the variables

Y2 expressing knowledge about a specific object. Thus, for example x

= Entreprise.

Towards a Computational Theory of Image Understanding

We consider understanding images to be a two-stage process. Image ana-

lysis extracts features from the raw intensity values recorded in an

image and converts these features into a convenient symbolic

representation. Scene analysis interprets the symbolic features pro-

duced by image analysis according to some externally-defined goal.

Image analysis defines what can be considered as forced by the data in

the subsequent interpretation. Scene analysis, on the other hand, is

an exercise in problem solving. At this stage one is free to invoke

whatever prior knowledge is available to aid in image interpretation.

In early artificial intelligence research, there was assumed to be a

sharp line between image analysis and scene analysis. The purpose of

image analysis was to generate a two-dimensional line drawing of the

scene (Binford and Horn [28]. The purpose of scene analysis was to

interpret these two-dimensional line drawings in terms of the three-

dimentional objects which motivated them (Roberts [29], Winston [30]).

As the field matured the information leading from image analysis to

scene analysis became stronger (Falk [31]), leading to a substan-

tial reduction in the computation required in image analysis. Recent

23

work (Marr [8]) has shown that there is a great dedl of information

about three-dimensional shapes contained in image intensities and that

this information can be computed without the help of higher-level

knowledge.

Image Analysis is a hard problem

A. Data Compression

One of the major goals of image analysis is to extract features of

intensity that are important and to throw everything else away. In

other words, one of the first challenging steps in the image analysis

endeavor is to choose a useful method of data compression. The features

one wants to use in a data compression process are those which can be

conveniently defined in terms of properties oi images. The image pro-

perties need to be simple to compute.

B. Loss of Information

Data compression is a means of choosing useful information and neglecting

the rest. But, because images are defined in two dimensions, while

objects exist in a three-dimensional world, information is lost in the

projection of a three-dimensional object into a two-dimensional image.

The mapping from object-space to image-space is many to one. It is

not conceivable to analyze two-dimensional images without some speci-

fic assumptions about the three-dimensional nature of the objects that

motivate the image. A particular object feature may appear quite dif-

ferently depending on the direction of viewing. As Marr [8] puts it,

images have a viewer-centered representation, and this can become a

tedious and frustrating problem for recognition of objects. Moreover,

projection introduces two-dimensional image features which have no

direct correlation with any three-dimensional object property. For

24

example, neighboring points in an image do not necessarily correspond to

neighboring points on objects.

Ways of Avoiding the Difficulties

A. Principle of the Least Commitment:

In most real world situations, it is advisable to keep genera-

lity for as long as possible. In other words, one does not want to

decide too soon upon the values of primitives, or their relevance to

anything in general - the decisions are made when more information is

available, when the trade-off between what is desired and what it is

possible to compute is established. A too early commitment does not

ensure the way to the solution, but rather a narrows down of the

possibilities.

B. Organization of Information

One should be able to classify objects into broad categories, and also

discriminate in detail categories as needed. Thus, the most

general discrimination would be between ships and islands, for

example, but the recognition system must be able to distinquish types

of ships, like combatant ships from transporation, for example, and

moreover, one should be able to classify within types (such as

destroyers or aircraft carriers).

An important requirement is to identify the nationality of ships, or

their function - do they belong to the enemy, or to one of the allies?

Are they used for intelligence, or for destroying? At the same time

we do not want to get more detail than is needed. Thus, for example,

once an island is identified, if the target is a ship, one should not

pursue further the information about the island. This leads to the

idea that information must be accessed from general to particular.

25

3.0 THE SEMANTICS OF TRIVALENT QUANTIFIERS

A key feature of our knowledge-representation language is the use of

quantifiers in its sentences. In particular, we include both standard

bivalent quantifiers and non-standard trivalent ones; the latter allow

a third "truth value" other than true or false, arising from the use

of dynamic semantic interpretation. In this report, we illustrate the

semantics of these quantifiers by giving a sketch of a language which

contains them. This language can be viewed as defining part of the

semantic requirements on the knowledge-representation language itself,

i.e., those requirements imposed on the language by its use of triva-

lent quantifiers.

1. Basic Symbols

We distinguish four kinds of symbols in our language: constants,

variables, predicates, and quantifiers. Constants serve as proper

names; each constant denotes one specific individual object.

Variables act like proper names whose specific reference can change; a

single variable can denote different individual objects, depending on

the requirements of the context. Predicates serve to identify classes

of objects and relationships among such classes; the number of classes

involved in such a relationship is reflected as the number of argument

places in the predicate. Quantifiers serve to relate predicates, spe-

cifically in terms of their reference; in general a quantifier will

focus on one class of predicates and express a relationship between it

and another such class, the two classes being separated by a semi-

colon [32].

The symbols in (1), for example,,are constants; each denotes

(1) PT109, U.S.S. Enterprise

27

exactly one object, the PT109 and the U.S.S. Enterprise, respectively.

The symbols in (2) are variables; either could denote either of these

(2) x,y

objects depending upon the context. The symbols in (3) are

predicates; the first three are one argument predicates and thus

(3) Submarine(), Carrier(), Threatened (), Under(

denote classes of lists of length 1, namely, the classes of

submarines, of carriers, and of threatened things, respectively; the

fourth is a two-argument predicate and thus denotes a class of lists of

length 2, namely, the class of pairs of objects such that the first is

under the second. The symbols in (4) are quantifiers; the first two

are standard symbols in logic, meaning "whatever" and "there is" or

(4) V, 3, All, Only, Many, The

"there are", respectively; the others mean essentially what they mean

in English.

2. Formulas

Formulas of the language are formed by combining quantifiers,

predicates, variables, and (perhaps) constants in meaningful ways.

Formula (5), for example says that whatever is a submarine is

(5) (Vx)(Submarine(x); Threatened(x))

threatened. Formula (6) says that all submarines are threatened; it

28

(6) (All x)(Submarine(x); Threatened(x))

differs from (5) in assuming that there are, in fact, submarines in

the field of interest and thus that the asserted threat is actual, and

not merely potential. Formula (7) says that there are (one or more)

(7) (3x)(Submarine(x); Under(x,PT109))

submarines under the PT109; we could say that there is exactly one by

using a different quantifier. Formula (8) says that the submarine

(8) (The x)(Submarine(x), Undet(x,PT109); Threatened(x))

under the PT109 is threatened; it assumes, as part of the meaning of

"The" that there is, in fact, exactly one such submarine.

The role of the variable "x" in each case is to relate the quantifier

to the predicate and, in particular, to the appropriate argument place

in the predicate; for example, if the PT109 were itself a submarine,

then formula (9) would make just as much sense as formula

(9) (The x)(Submarine(x), Under(PT1O9,x); Threatened (x))

(8), because it says that the submarine the PT109 is under is

threatened. More complicated meanings can be expressed by introducing

additional variables for additional quantifiers; formula (10), for

(10) (The x)(Submarine(x),(The y)(Carrier(y),Under(x,y);Threatened(x)))

example, says that the submarine under the carrier is threatened,

while formula (11) says that there is a threatened submarine under the

(11) (3x)(Submarine(x),(The y)(Carrier(y),Under(x,y);Threatened(x)))

29

carrier, and formula (12) says that there is a submarine under the

(12) (3x)(Submarine(x),(The y)(Carrier(y),Under(x,y);Threatened(y)))

threatened carrier.

3. Models and Satisfaction

We take as models of our language the set of pairs<D,R> , where D is

the set of objects on or in the ocean and R is a function that assigns

members of D to constants and lists of members of D to predicates, the

length of a list being equal to the number of argument places in the

predicate. A model, in other words, is a possible state of the ocean,

as derived, for example, from a radar scan. Given a model M, we say

that a formula is true in M or Aatisfied in M, written M i= (A), if it

is true or satisfied in M no matter what values are assigned to free

variables, i.e., variables not associated with ("bound by") a

quantifier. The latter notion, i.e., satisfied by M given an assign-

ment of values to variables, is defined by rules like (13)-(18), where

f is a function that assigns members of D to variables,

(13) M(2 =)[f] iff (i.e., if and only if) f(xl) =_f(Z2);

(14) M_ _~ l . .Xn) _] iff (_f(xM),......(__) E R(P);

(15) 101(A&B) Ef] iff M (A)Ef] and M (B)[f];

(16) M!(-iA) f] iff it is not the case that MNA)[f];

(17) .M1((Vx)A)[f] iff M (A) [f'] for whatever

assignments f' for M are like f except perhaps (i.e.,

at most) at x;

30

(18) MP((Yx)(B;A)) [f] iffM(A) [f'] for whatever

assignments f' for M are like f except perhaps at x for

which M (B) [f']

and "Mi(A) [f]" is read f satisfies A in M or M satisfies A given f B3].

B and A in (19) are lists of formulas, the relativization

(19) (Yx) (B;A)

formulas and the principal formulas, respectively, of (19).

Intuitively, MP(A) can be read as saying that formula A is true of

the state of the ocean that is represented by M. Formula (5), for

example, is true of a given state of the ocean if whatever submarines

are present in that state are, in fact, threatened.

Given rules (15) and (16), we can define "B:A", read if B then A, as
"'(B &-,A)"; in other words, "if B not A" is true in a model if and

only if it is not the case that B is true and A is not.

Given this definition, formula (5), for example, is logically

equivalent to formula (20), which contains only the single complex

(20) (Vx) (Submarine(x) DThreatened(x))

predicate "(SubmarineDThreatened)()", rather than the two predicates "Submarine

()" and "Threatened()". In general, however, it is not possible to

reduce a two-predicate formula to a one-predicate one, for quantifiers

other than "Y" [32].

4. Dynamic Rule Application

31

1!

Given rules (16)-(18), we can define "3x" as "-(Vx)-", the rightmost "-

applying only to the rightmost predicate in "(Vx)(B;A)". This

enables us to talk about the satisfaction of formulas with "3",

without having to give an explicit satisfaction rule for them. We can

also define satisfaction for quantifiers like "All", "Only," and "The"

without giving explicit satisfaction rules for them, by reading rule

(18) in a non-standard way.

Rules like (13)-(18) are standardly viewed as applying "statically",

i.e., as passively describing a state of affairs, a relationship that

obtains between a formula and a model, but they can also be viewed as

applying "dynamically", i.e., as actively assigning to formulas the

values of a feature [+ satisfied]. On the static view, such rules are

inherently bivalent, because of the "iff" that occurs in their

formulation: either Mt(A) [f] or not, depending on the content of the

relevant rule. The dynamic view, however, allows for a third "truth

value", because of the possibility that a rule gets stopped in the

course of its execution, before it gets to assign an appropriate

value. We can say that A is true (in M (given f)), if A is assigned

the value [+ satisfied] by the relevant rule; false, if it is assigned

the value [- satisfied]; and neither (true nor false), if the rule

gets stopped for some reason before it can make an assignment. Given

a rule like (4), a formula and its negation will be assigned opposite

[satisfaction] values, assuming that they get assigned at all. In the

event that a rule stops, neither the formula nor its negation gets

assigned a value, and neither of them is true. Satisfaction simply is

not an issue for such a formula or its negation in M (given f).

In particular, we assume that (18) applies by testing (f')s

first against B in (19) and then against A and that tests of both

kinds must actually have taken place in order for the rule application

to have been successfully carried through to completion. If (18)

32

finds assignments ' that satisfy B in M and then finds that each of

those satisfies A, then it assigns the feature value [+ sdtisfied (by

f in M)] to (19). If it finds (f')s that satisfy B but then finds that

some of those fail to satisfy A, then it assigns the feature value

[-satisfied] to (19). If it fails to find any (f')s at all that

satisfy B, and so has nothing to test against A, then it simply grinds

to a halt without rendering any judgement as to the relation between

(19) and [+ satisfied]. In the first case, (19) is true under f in M

of the state of the ocean that is represented by M. In the second

case, its negation is true of that state of the ocean: (19) itself is

false. In the third case, (19) is simply irrelevant to that state of

the ocean: neither it nor its negation is true, because satisfaction

is not an issue for them for the model and assignment in question.

To get definitions for "All", "Only", and "The", we consider the case

in which B in (19) contains no free variables. If B does not contain

the variable of quantification (i.e., x) free, but does contain other

free variables, then an assignment f will assign values to those

variables, and every f' that differs from f at most at x will assign

exactly the same values to those variables, since f' also differs from

every other f' at most at x. It follows that B is satisfied by every

f' or by none according as B is satisfied or not by f. Since f' dif-

fers from f at most at x, in other words, f' is f, as far as B is

concerned, because B does not contain x and so is blind to the dif-

ference between f and f'. Under our dynamic reading of (18), however,

whether or not there is an f' that satisfies B is what determines

whether or not satisfaction by f is an issue for (19), so satisfaction

by f will be an issue for (19) according as f itself does or does not

satisfy B. This is because f itself is an f', differing from itself

at most at x, just as every other f' differs from f at most at x.

If B not only lacks the variable of quantification, but is entirely

devoid of free variables, then even f itself is irrelevant to the

33

"1

satisfaction of (19) by f. If B contains no free variables at all,

then it is blind to the differences not only among the various (f')s,

but also among the various (f)s, before we even get around to sorting

them into (f')s. This means that the satisfaction of B in M depends

not on any assignment, but only on the model itself, and that this is

the case also, therefore, for whether satisfaction is an issue for

(19).

It follows that we can get the correct meanings for "All" and "Only",

for example, by defining them as in (21) and (22), in which B is sti-

pulated to contain no

(21) (All x)(B;A) = (Ix)((x)B, B; A)

(22) (Only x)(B;A) = (x)((3x)(B;A),A;B)

free occurences of x. For example, by these definitions, formulas

(23) and (24), respectively, are equivalent to formulas (25) and (26)

(23) (All x)(Submarine(x); Threatened(x))

(24) (Only x)(Submarine(x); Threatened(x))

(25) (0x)((3x)Submarine(x), Submarine(x); Threatened(x))

(26) (Vx)((3x)(Submarine(x); Threatened(x)), Threatened(x);

Submarine(x))

because -- using (27) for (25) and (28) for (26) -- , these formulas get

(27) (a) (3x) Submarine(x)

(b) (Vx)(Submarine(x); Threatened(x))

34

(28) (a) (3x)(Submarine(x); Threatened(x))

(b) ('x)(Threatened(x); Submarine(x))

assigned [+ satisfied], if both (a) and (b) are true; [- satisfied],

if (a) is true but (b) is not; and neither, if (a) is not true [34].

(29) (Vx)(Submarine(x); Threatened(x))

In contrast to formula (29), for example, which is true even if there

are no submarines on the ocean at all, formula (23) is true only if

there are, in fact, such submarines. Similarly, formula (24) is true

only if there are in fact, submarines that are threatened. The

significance of this point becomes clearer in connection with formula

(30), which also requires the existence of threatened submarines, to be

(30) -- (Only x)(Submarine(x); Threatened(x))

true according to (26). Formula (30) tells us both that submarines

are threatened and that other things are threatened as well, without

specifying what these latter things are.

5. Model Selection

The semantic effect of a list of formulas in our language is to narrow

down the class of possible states of the ocean (i.e., models) to the

intersection of the classes of those that satisfy each formula

individually. This contrasts with more standard accounts that view

formulas as building up a model that contains the objects mentioned in

the formulas [35]. An advantage of our account is that it leaves all

options open except those it is explicitly desired to rule out. Given

a report consisting of a sequence of formulas like the one in (31),

for example, a constructive interpretation would conclude

L 35

(31) (3x) Carrier (x)

(3x)(Submarine(x); (The y)(Carrier(y)); Under(x,y)

that there were no destroyers in the area because destroyers are not

mentioned in the report. Our selective interpretation would leave

this question open because the presence of destroyers has not been

ruled out in the report. This seems clearly to be the safer option.

Our account also provides a double check on consistency through its use

of trivalent quantifiers. Suppose that there are sentences and

in a report such that j<k and such that the formula that represents

the meaning expressed by the negation -'.j of sj occurs as a relativi-

zation formula--without free variables--of the formula that represents
the meaning expressed bys k. Since j rules out all models that

satisfys j, the relativization formula of sjk is not satisfied, so
satisfaction is not an issue for sk. In the report suggested in (32),

for example, a warning will result from s, because all models in

(32) j:-1(3x)(Submarine(x); Threatened(x))

Sk: (Only)(Submarine(x); Threatened(x))

[=(Vx)((3x)(Submarine(x); Threatened(x)), Threatened(x); Submarine (x))]

[=26]

(rejected by sj)

36

which it can be either true or false have already been rejected by _sj.

6. Control Maps and Fuzzification

This framework can be refined in various ways, in particular, by

replacing predicates with a functional notation and allowing the

resulting functions to have internal structure [361 Once this move is

made, the way is open to the use of HOS control maps for representing

this structure in a systematic wiy and to the fuzzification of the

language through the use of linguistic variables. Developing these

two options is the focus of currently on-going work.

37

4.0 IMAGE ANALYSIS

An image is a two-dimensional array of intensity values. The fiyrst goal

in analyzing an image is to describe the significant intensity ch'anges.

A change in intensity is usually the result of change in illuminzstion,

or a discontinuity in the depth or orientation of a surface, sucbi as that

which occurs along the boundary between two objects separated in depth.

Many times real world objects impose on the intensity changes a

variety of spatial organizations, reflected in the structure of the

image. These structures are captured by a set of tokens that

correspond to oriented edge or boundary segments. Thus, we have::

(1) bars: parallel edge pairs

(2) blobs: closed contours which can be defined from a cloud nf

tokens, for example.

A given intensity change allows for computing the two-dimensional

orientation in the image, the width, i.e., the distance across wftiich

the intensity is changing, and the length, i.e., the distance aIomg the

orientation of the intensity change over which other properties ramain

roughly uniform.

The physical changes that are the direct motivation of changes in i

intensity are edgs. But, unfortunately, there may not exist a orne-to-

one correspondence between intensity changes detected at a particular

scale, and edges in the physical world. Thus, we need a method fr

edge detection.

The Intensity Function As Edge Detector

A change in intensity is the phenomenon that we detect and describe in

an image; edges are the physical changes that motivate the changes in

intensity. To deal with intensity changes, we have to find a furnction

39

to apply to the image which will allow us to extract the changes. This

function has to be able to deal with uniform changes as well as with

abrupt changes. Also, changes can take place on different scales, for

example, there are local changes and macro-changes. The local changes

take place over short distances; the macro-changes are gross, general

changes in the image. Thus, we can formulate two requirements in

the formal definition of the intensity function:

(1) the intensity change incorporates the scale at which the change

occurs.

(2) Since changes in the physical world are taking place in

space, the function has to be spatially localized.

The main goal of the intensity function is to localize the

discontinuity in the image intensity. This is achieved by finding

peaks in the first directional derivative of intensity, or

equivalently, zero-crossings in the second directional derivative

(a zero-crossing is a place where the value passes from positive to

negative). Zero-crossing provides a natural way of moving from

a continuous "analog" representation, such as two-dimensional intensity

values, I(x,y) to a discrete "symbolic" representation without loss of

information. (Logan, thereom [37]). But it is impractical to consider

the orientation, so we should try to find a function which is not a

directional operation. The only nondirectional linear second-

derivative operator is the Laplacian operator. The equivalent of the

zero-crossing of the second directional derivative taken perpendicular

to an edge coincides with the zero-crossings of the Laplacian along

that edge. (Marr and Hildreth [38]). Thus, we can detect intensity

changes occuring at all orientations using the non-oriented location

operator.

40

Intensity Function

Remarks:

The descriptions obtained from a single channel are sets of zero-

crossing contours (blobs, bars) with symbolic descriptions of

orientation, slope, and size, attached to the segments of the con-

tours or to the entire contour. By size, we understand the length and

width of the contours. Primitive tokens can be combined to form

larger scale tokens that reflect larger scale structure in the image.

Thus, at some intermediate level we group together the tokens with the

same orientation, and the difference in orientation obviously would

determine the representation. One would expect that in one of the

large objects, the degree of organization of the 'images' is not very

high at the smaller scale, and become more interesting at the larger

scale.

Marr and Hildreth [38] consider three main steps in the detection of

zero-crossing,

(1) a convolution with D2G where D2 is the second directional deriva-

tive operator, and G is the Gaussian.

(2) the localization of zero-crossing, the location of the value zero

of D2G.

(3) checking the alignment and orientation of a local segment of

zero-crossi ngs.

When certain conditions are satisfied :,hese steps might be made more

economical. A zero-crossing segment in a Gaussian filtered image is a

linear segment I of zero-crossings in the second-directional deriva-

tive operator whose direction is perpendicular to 1.

The amplitude associated with a zero-crossing segment is the slope

of the directional derivative token perpedicular to the segment.

41
t .. .

The set of zero-crossing segments and their amplitudes constitutes a

primitive symbolic representation of the changes in a region of

image's spectrum. To cover the whole spectum requires the

reapplication of the analysis over a sufficient number of channels.

Logan (1977) [37], (quoted from [39]) shows that if a one-dimensional

analytic function is (a) bandpass of bandwidth one octave less, and (b)

has no free zeroes, i.e., complex zeroes in common with its Hilbert

transform, then the function is completely determined (up to an

overall multiplicative constant) by its zero-crossings.

Thus, this theorem says that if condition (a) is satisfied then the

zero-crossing completely determines the convolution values.

Constraint: For a reliable representation of an image based on

zero-crossings, which allows recovery of sharp intensity change, we

have to filter it through a set of independent bandpass channels with

one octave bandwidth. Thus, the masics that approximate the second

directional derivative operator, following Logan's result, should be a

bandpass with one octave bandwith.

Improving efficiency: Orientation is an important property of an

edge, but it is more efficient and less costly to compute it. Often

the convolution of an image with the nonoriented Laplacion operator

was done, and a map of intensity changes at all orientations was

obtained.

Thus, the Gaussion distribution satisfies the localization, space

and frequency properties, and the Laplacian satisfies the property of

having one orientation dependency.

Conditions on the intensity function.

1. Condition of Linear Variation: The intensity function near and

parallel to the line of zero-crossing should be locally linear.

42

2. Condition of Linearity: The intensity function should be linear

along, but not necessarily near, the line of zero-crossing.

If these two conditions are satisfied, then an intensity change at any

orientation will coincide with a line of zero-crossings in the output

of the Laplacian, along the orientation of the change.

Intensity function: We have seen that the intensity function has to

satisfy two basic requirements. These two requirements are

conflicting, and Barcewell [40] relates them by the uncertainty

principle, which says xA , I/47r , where A x is the spatial variance,

and _%LO is the frequency variance. The Gaussian is the only distribu-

tion [N] which optimizes this relation:

(1) G(x) = 1/ a2 exp(-x 2/2a2),

with Fourier transform

(2) G(w) = exp(-c 21-)

where c is the number of picture elements. In two dimensions,

G(x,y) = a2exp(-r 2/2a2)

where r2 = x2 + y2, the distance from the center of the mask. Then

the Laplacian of the Gaussian distribution is

2 G = 6 2G/6x 2 + 2Gl6y2

= [2 - r2/a2] exp(-r 2/2a2)

then, the intensity changes may be detected by looking for the zero

values in the convolutionv 2 G*I. Where I is the image (I(x,y)) and
'*' is the convolution operator. Thus, we seek the zero crossing in

43

f(xy) =,' 2 (G * I(x,y)), and by the derivative rule for convolutions

f(x,y) =v2 G *I (x,y).

Thus, in order to detect intensity changes, the following steps are

i nvol ved:

(1) the image I(x,y) is convolved with the two-dimensional Gaussian

operator.

(2) if the condition of linear variation holds, intensity changes in

G * I are characterized by zero crossings in the orientation-

independent differential operator, the Laplacian obtained by

searching for zero values in the convolution 72 G * I.

44

5.0 AREAL COORDINATE SYSTEMS FOR PLANE DECOMPOSITION

Image processing tends standardly to be based on decomposition of the

plane into narrow bands that support the representation of images by

distinguishing edges and differential intensities of various planar

regions. In this report we examine two alternative methods of

decomposing the plane that replace bands with squares and hexagons.

Using regular figures like squares and hexagons maximizes the unifor-

mity of a representation by supporting a natural arithmetic encoding

of those figures, their higher-level aggregates, and their geometrical

relationships, such as vector addition, rotation, and distortion. In

particular, we will compare the areal coordinate systems that result

from square- and hexagon-coverings of the plane with respect to a

number of criteria that appear to be relevant to the representation of

image-derived information.

1. "Slippage"

A covering of the plane with squares allows for "slippagen in

that the correspondence between adjacent rows or columns of squares

can be entirely arbitrary. In Figure la, for example, the squares are

arranged in a uniform grid pattern, while in Figures lb and 1c, suc-

cessive rows are displaced with respect to each other to a greater or

lesser degree. In Figure lb, this displacement is uniform in that

each row of squares is displaced by exactly one half of a side length,

while in Figure 1c, the displacement looks quite arbitrary, leading to

an apparently very complex pattern of square arrangement. It follows

from this fact that a specification of side length and location alone

of one square is far from sufficient to determine the general pattern

of a plane covering. If we assume uniform (or null) displacement of

successive rows, then a specification of side length and location of

two non-co-row or columnar squares suffices to determine the entire

covering, as shown in Figures la and b. Without such an assumption,

45

(a) d= 0

, -null

displacement

(b) d-11S

uniform

displacement

(c) d : s

more complex

displacement

Figure 1: Horizontal Slippage in Square-Coverings of
the Plane

46

however, nothing can be determined about the pattern of the covering

without a specification of the location of one square in each row.

The displacement of successive rows in Figure Ic, for exatmple, is

given by d = s/2n-1, where s is the length of a side, n is the number

of a row above the bottom one, and d is the fraction of side length a

row is displaced to the right. Clearly, more complex patterns can

easily be generated by such slippage, leading to abstractly

interesting, but less and less useful and practical squarle coverings

of the plane. As shown in Figure 2, this is not a problem in hexagon-

coverings of the plane. Once a single hexagon is located in the

plane, the entire rest of the covering is thereby also dertermined.

All that needs to be specified to characterize a hexagon-covering, in

other words, is the side length and location of one hexagon.

2. Uniform Adjacency

Square-coverings of the plane have non-uniform adjacency, as

shown in Figure 3. In the case of null displacement, some squares

meet on a side and some meet at a point, as shown in Figuire 3a. In

the case of uniform displacement, all squares meet on sidfs, but some

meet on a full side, while others meet on portions of a siide, as shown

in Figure 3b. If more complex displacement is allowed, tfhen adjacency

is even more non-uniform, as shown in Figure 3c, since even these por-

tions are of different lengths in the various meetings because of the

differences in displacement from row to row. As shown in Figure 4,

this is not a problem in hexagon-coverings of the plane, ibecause each

hexagon meets each of its neighbors on a full side and shores exactly

one sixth of its boundary with each neighbor. Adjacency 'is strictly

uniform, in other words, in hexagon-coverings of the plane.

3. Uniform Hierarchical Structure

Square-coverings of the plane are uniform in hierarchical struc-

ture only in the unique case of null displacement. As shTown in Figure

47

Figure 2: Absence of Slippage in Hexagon-Coverings of the Plane

48

(a)

(b)

(c)

Figure 3: Non-Uniform Adjacency in Square-Coverings
of the Plane

49

Lt

Figure 4: Uniform Adjacency in Hexagon -Coverings of the Plane

50

5a, an aggregate consisting of a square and all its immediate neigh-

bors itself constitutes a square, as does the aggregate consisting of

that square and all of its immediate neighbors. This is not the case,

however, with uniform or more complex displacements. As shown in

Figure 5b for the case of d = s/2, the aggregate that consists of a

square and all of its immediate neighbors is not a square, or even a

rectangle, but a twelve-sided figure with sides not even of equal

length, because of left- and rightward extensions induced by the

displacement itself. Hexagon-coverings of the plane are also non-

uniform in hierarchical structure in that an aggregate consisting of a

square and all its immediate neighbors is not itself a hexagon, but a
"snowflake"-like figure with eighteen sides, as shown in Figure 6. In

contrast to square-coverings with d = s/2, however, these sides are all

of equal length and the aggregate itself is symmetric around its

center, resulting in invariance of the covering as a whole under any

number of sixty-degree rotations of the plane in any direction. The

square-aggregate in Figure 5b is symmetric around its horizontal and

vertical axes, but not around its center, resulting in invariance of

the covering as a whole only under rotations of 1800 or its multiples.

4. Uniform Packing

Square-coverings of.the plane allow uniform directly vertical,

horizontal, and diagonal packing of first-level aggregates only in the

case of null displacement. As shown in Figure 7a, such aggregates

pack uniformly with no gaps in the covering in each of these three

directions. Directly vertical packing is impossible in the case of

horizontal displacement, because of the displacement itself, as can be

seen in Figures 7b and c. As shown in Figure 7b, directly horizontal

packing necessarily leaves gaps in the covering, and the same is true

of directly diagonal packing, as shown in Figure 7c. Uniformity is

possible with first-level square aggregates only in displaced packing.

As shown in Figure 7d, potential gaps in the covering can be elimi-

51

(a) d 0
- - -- - - - - - uni form

-- - hierarchical

I I non-uniform
hierarchical
structure

Figure 5: First-Level Aggregates in Hierarchical
Structure of Square-Coverings of the Plane

52

Figure 6: First-Level Aggregate in Hierarchical Structure of

Hexagon-Coverings of the Plane

53

(7 a) d =0
uniform packing,

- - - - -- - directly vertical,
- horizontal, and

- -- diagonal

(7b)d

I I M M LI 1 1 non-uniform

horizontal

I F I I I I Ipacking

54

d_ s
(7c) 2

M T 1_ I IFI Inorn-unif'orm
dtrect1 y
diagonal

I I Lpacki ng

(7 d)d 2

um) if orm
7TT71 ___1 I Idi-spl aced

I F1 II I F paxki ng

T T

Figure 7: First-Level Packing in Square-Coverings of
the Plane

55

nated only by having the surrounding aggregates displaced around the

center aggregate in the direction of the displacement of the squares

themselves. With hexagon-coverings of the plane, the situation is

similar, directly horizontal packing being impossible this time

because of the fact that first-level aggregates must always meet in a

side, just like the hexagons that make them up. As shown in Figures

8a and b, respectively, directly horizontal and diagonal packing

are necessarily non-uniform with a different gap pattern left in the

covering in each case. As in the case of square-coverings of the

plane, uniform packing is possible with hexagon-coverings only by

having the surrounding aggregates displaced with respect to the center

one, as shown in Figure 8c.

5. Arithmetic Encoding of Hierarchical Structure

5.1 Hexagon Arithmetic

Hexagon-coverings of the plane can be naturally encoded in arithmetic

form in a way that gives useful geometric interpretations to the basic

arithmetic operations. First, we choose one hexagon as our "origin"

and assign it the "coordinate" 0, as show in Figure 9a. Second, we

assign numbers from 1-6 to each of the six directions emanating from 0

and assign the number of each direction as a coordinate to the imme-

diate neighbor of 0 in the respective direction; in particular, we

assign these numbers so that the coordinates of opposite hexagons add

up to 7, as shown in Figure 9b. Finally, we assign numbers in the

same way to aggregates of each level, using a new leftward place value

for each level of aggregates, as shown in Figure 9b. Given the num-

bering scheme, addition of hexagons can be defined as in Figure lOa

and multiplication as in Figure lOb, with all the usual laws of addi-

tion and multiplication (associative, commutative, distributive, etc.)

assumed to hold, as illustrated, respectively, in Figures 11a and b.

56

(8a) Non-Uniform Directly Horizontal Packing

57

>7

(8b) Non-Uniform Directly Vertical Packing

58

(8c) Uniform Displaced Packing

Figure 8: First-Level Packing in Hexagon -Covering% of the Plane

59

(9a) Arbitrary Choice of Origin

60

(9b) Numbering of Directions and Immediate Neighbors of Origin

61

., 7 o,..i 3 -3" "

5 10 3 5 3 4 6 2 4 0,/

4- 2 -100-3 6 4

-5 40 3,1\6--260 50--\ 3 1-

2 5 02 53

-5 3 6 4 6 2 4 0 530 5 1 4 6,

10c 5oriae of 1h 6is 4he Leel of Aggegte

Fiur 30 Corint Syte of 6exaon00verin

5 45 614 6 242

(a) The Hexagon Addition Table

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 12 3 34 5 16 0

2 2 3 24 25 6 0 61

3 3 34 25 36 0 1 2

4 4 5 6 0 41 52 43"

5 5 16 0 1 52 53 4

6 6 0 61 2 43 4 65

(b) The Hexagon Multiplication Table

x 0 1 2 3- 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

Figure 10: Hexagon Arithmetic Tables

63

(a) A Sample Hexagon Addition Problem

PROBLVI: Add the numbers 123 and 461.

(2) (3) Note: 0) Denotes a carry.
1 2 3

+.4 6 1
0 4 4

3 + 1 - 34 or (34

(3) + 2 -25, 25 + 6 = 24 or (2)4

(2)+ I= 3, 3 + 4 0.

(b) A Sample Hexagon Multiplication Problem

25
x 64

16 (25 x4)
52 C=25 x 6)
536 (sum using System X addition)

Figure 11: Sample Hexagon Arithmetic Problems

64

The addition of two digits results in a base digit, which is the sum

of the two digits modulo 7, and a carry-digit, which, when non-zero,

indicates the direction in which the addition carries the sum into the

next row of surrounding hexagons, as shown in Figure 12. Multipli-

cation of two digits is simply their product modulo 7. Geometrically,

hexagon addition is a hierarchical version of standard vector

addition, as shown for the example of Figure 11a in Figure 13a.

Hexagon mulitplication adds angles, measured from the vertical, and

multiplies distances from the origin, as shown in Figure 13b, and so

can be used to represent the stretching and rotating of image patterns

in the plane.

5.2 Square Arithmetic

The arithmetic encoding of square-coverings of the plane is richer

than that of hexagon-coverings because of the potential variations in

grid patterns discussed in earlier sections. Square-coverings with

null displacement cannot be encoded as straightforwardly as hexagons

because of the absence of uniform adjacency, which we discussed in

Section 2. As shown in Figure 14, numbering a null-displacement

square-covering in a manner analogous to that of the hexagon-covering

we discussed in Section 5.1 leads to an addition table that lacks the

appropriate modulus property. Since there are eight squares

surrounding any given square, base digits should add modulo 9, just as

hexagon base digits add modulo 7, but this is not borne out in fact.

An appropriate numbering is given in Figure 14a and the addition table

derived from it (by the vector parallelogram law) in Figure 14b. As

the table shows, 8 plus 4, for example, is 82, but 8 plus 4 is not 2

mod 9.

A geometrically natural encoding of null-displacement square-coverings

can be obtained, if we drop the requirement that a higher-level aggre-

gate must consist of a lower-level aggregate plus all its immediate

65

9L

I,

53 6 24

Figure 1S: The Significance of Carry-Digits in Hexagon Arithmetic

66

Figure~~~~~~~ ~ ~ ~ ~ ~ ~ 1 h infcneo ar-Dgt nHxgnAihei

. I l P * ""6.

"- 1010 "-3

5 10 3 5 1 - -2 4 3 '

-< '2 5 O 1

.- 5 3 1

51a 3diin 1 Hirrcia Verio 2 f the Stndr VetrPrallga

4 50 2 5 00 3 5 1 671 4 6 2 42

1 L2 03 5 1

-, 1 3 02 0

5-" 3 \ 04 0351361462 42
6 i 6 2 4 20 2 5 40 3 5 1 6

5 40 3 5 3 1 4 6 2 4 60 2 5 10! 1

(13b) 2utpiain Adds Anle fro 1h Vetia 4n Mutpie2
1itne fro 4h Origin 1 6

Fiue13: 5emti Inepetto of Heao 4Arithmetic 6

4 -3 5 3 -1 6 2 2 58

° " i i _

50 10 20

5 1 21
60 6 00 3 30

7 8 4

70 1 801 140.

(a) An Appropriate Numbering

+ 0 1 2 3 4 5 6 7 8

00 1 2 3 4 5 6 7 8

1 1 18 14 2 3 17 5 6 0

2 2 14 27 35 36 18 1 0 3

3 3 2 35 36 37 1 0 8 4

4 4 3 36 37 45 0 8 81 82

5 5 17 18 1 0 54 62 63 6

6 6 5 1 0 8 62 63 64 7

7 7 6 0 8 81 63 64 72 85

8 8 0 3 4 82 6 7 85 81

(b) The Corresponding Addition Table

69

Figure 14: Null-Displacement Square Addition

neighbors and, instead, allow first-level aggregates to consist of a

square plus those immediate neighbors that meet it at an edge, rather

than at a point, as shown in Figure 15. Such aggregates pack uni-

formly in two ways, upward climbing and downward climbing as shown in

Figure 16, and a suitable arithmetic can be constructed for either

packing by having the coordinate numbers climb in the direction oppo-

site to those of the aggregates themselves, as shown in Figures 1 and

18 for the example of downward climbing coordinate numbers. As shown

in Figure 17, downward climbing numbers with upward climbing aggrega-

tes results in a suitable arithmetic encoding, with base digits adding

modulo 5, but as shown in Figure 18, the same numbering fails to yield

an appropriate arithmetic when the aggregates are also downward

climbing.

Uniform displacement in square-coverings of the plane results in an

arithmetic that is intermediate in a number of ways between null

displacement and hexagons. As with hexagons, each square has exactly

six immediate neighbors, each of which meets the square at an edge,

but, in contrast to hexagons, some meet at a full edge and some only

at a half edge, because of the displacement itself, as shown in Figure

19. As with square-coverings with null displacement, two uniform

packings of first-level aggregates are possible, upward climbing and

downward climbing, as shown in Figure 20, and a suitable arithmetic

can be defined only when the climbing of the aggregates is opposite to

that of the numbering, as shown in Figures 21 and 22. According to

Figure 21, 5 plus 4 for example, is 42, in accordance with the fact

that 9 is congruent to 2 mod 7, but, according to Figure 22, 5 plus 4

is 43, which is not consistent with this fact. If, for convenience,

we refer to hexagon arithmetic as arithmetic of type X (for heXagon)

and to square arithmetic with null displacemnt as arithmetic of type T

(for the shape of its first-level aggregates), then it makes sense to

refer to square arithmetic with uniform displacement as arithmetic of

type X-T to indicate its intermediate status. Whether this suggestive

70

Figure 15: Arithmetically Encodable First-Level Square
Aggregate: Null Displacement

71

A I

now 74 4 -- 1

(16a) Upward Climbing

LI I

I -7

(16b) Downward Climbing

Figure 16: Two Uniform Packings of First-Level
Square Aggregates: Null Displacement

72

- - - -1 2 _ _ _ - - -
1 1 201_

1 13'00 21

30 4

40

(17a) Numbering of Squares and Aggregates

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 12 23 14 0

2 2 23 24 0 41

3 3 14 0 31 32

4 4 0 41 32 43

(17b) Addition Table: Base Digits Add Modulo 5 4

Figure 17: Arithmetic When Numbers and Aggregates Climb
in Opposite Directions: Null Displacement

73

. , . .- . - 1

10

30 1

3 O0 2

4 20

40

(18a) Numbering of Squares and Aggregates

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 13 14 32 0

2 2 14 21 0 23

3 3 32 0 34 41

4 4 0 23 41 42

(18b) Addition Table: Base Digits Do Not Add Modulo 5

Figure 18: Arithmetic When Numbers and Aggregates Climb

in the Same Direction: Null Displacement

74

-Iue1: FrtLeeVgrgt n qaeCvrn

It I fr Dispace7iu

1 -75 I I 1 1

(20a) Upward Climbing

(20b) Downward Climbing

Figure 20: Two Uniform Packings of First-Level Square

Aggregates: Uniform Displacement

76

01 I F

(21a) Numbering of Squares and Aggregates

+ 0 1 2 3 4 5 6

0 I 2 3 4 5 6

1 1 52 3 14 5 56 0

2 2 3 34 35 6 0 21

3 3 14 35 16 0 1 2

4 4 5 6 0 61 42 63

5 5 56 0 1 42 43 4

6 6 0 21 2 63 4 25

(21b) Addition Table: Base Digits Add Modulo 7

Figure 21: Arithmetic When Numbers and Aggregates Climb
in Opposite Directions: Uniform Displacememt

77

(22a) Numbering of Squares and Aggregates

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 14 3 16 5 52 0

2 2 3 21 34 6 0 25

3 3 16 34 35 0 1 2

4 4 5 6 0 42 43 61

5 5 52 0 1 43 56 4

6 6 0 25 2 61 4 63

(22b) Addition Table: Base Digits Do Not Add Modulo 7

Figure 22: Arithmetic When Numbers and Aggregates Climb
in the same Directions: Uniform Displacement

78

notational device generalizes in any natural way to other areal coor-

dinate systems is an intriguing question theoretically, but would seem

to be of little practical interest. The wide range orf coordinate

systems themselves, however, would seem to be of very great practical

interest, especially if they can be integrated into a dynamic coor-

dinate system that shifts among them in response to ahplicational

needs.

6. Squares and Hexagons in Higher Order Software

Systems are defined in Higher Order Software (HOS) by giving for-

mal specifications of the data types, functions, and control struc-

tures that make them up. Data types are the basic kirmds of objects

that play a role in a system, functions are the activities these

objects are involved in, and control structures are the relationships

that obtain among these activities. A data type is specified by

giving a set of primitive operations that map into and out of the data

type (and others) in acco;-dance with a given set of axcioms. A func-

tion is specified by, first, defining an operation in terms of a tree

structure, or "control map," that expresses its decommosition into

suboperations and ultimately into the primitive operations on data

types and, second, assigning specific variables as inpxuts and outputs

of the operation so defined. Control structures are specified by

giving a control map in which variable operation names appear, so that

it is the relationships among them that get represented by the tree

structure, rather than the operations themselves. With respect to an

areal coordinate system, such as square- or hexagon-coverings of the

plane it is the squares or hexagons themselves, which we will call

"places" to emphasize their areal character, that provide the basic

data type, with things like distance measuring and boyrder deter-

mination in the class of operations, structures, and thus functions,

when appropriate variables get assigned.

79

L -A

Square-coverings of the plane with null displacement can be spe-

cified in terms of primitive operations that represent the four car-

dinal directions in the plane, as shown in Figure 23. Each primitive

operation assigns each place its immediate neighbor in the

corresponding direction, as characterized in the axioms in the figure.

The first axiom, for example, says that the immediate northern neigh-

bor of the immediate southern neighbor of a place is that place

itself, unless that place is a southern border--i.e., it lIacks an

immediate southern neighbor, stated in the first partitiom--, in which

case the North operation rejects, because no such neighbor exists.

North and South, in other words, are inverse operations, except for

the case in which one of them rejects. The second axiom,, in contrast,

characterizes East and South as orthogonal, rather than as inverses,

because it says that the immediate eastern neighbor of the immediate

southern neighbor of a place is the immediate southern neighbor of its

immediate eastern neighbor, except, again, in the case in which one of

these operations rejects and the corresponding neighbor does not

exist. Hexagon-coverings of the plane can be specified in a similiar

way, using six directions, rather than four, as shown in Fiigure 24.

Since square-coverings of the plane with uniform displacement also

involve six immediate neighbors of each square in forming first level

aggregates, and thus six basic directions, they too can be charac-

terized by the same data type specification as can hexagog-'coverings

of the plane.

Both hexagon-coverings of the plane and square-coverings ith

either null or uniform displacement can use exactly the same structure

for determining border regions. As shown in Figure 25, a boolean-

valued structure produces an output of True, if its input place has no

-.-ediate neighbor in the F direction, and False, if its Piput place

i n immediate neighbor in the F direction, where F is eny function

:,Pration) from places to places and thus, in particular, any of

' ci-ection primitive operations of the data type. Null-

80

DATA TYPE: PLACE;*
PRIMITIVE OPERATIONS:
place2 - Noth(place1)
place2 - South(place1)

place2 ' East (place1)

place 2 - West (place1)

AXIOMS:

WHERE p IS A PLACE

North (South(p)) a lp OR XREJECT (2p);East (South(p)) = South(East(1p)) OR K jECT (2p);

West (South(p)) - South(West(lp)) OR KREJEC 2

PARTITION OF p IS

pi Equal (South(p), REJECT) - False,

2pj Equal (South(p), REJECT) - True;

South(North(p)) = 3p OR KREJE.T (4 p);East (North(p)) = North(East(3p)) OR KREJECT (4p);

West (North(p)) = North(West(3p)) OR KREJECT (4p);

PARTITION OF p IS

3pi Equal (North(p), REJECT) - False,
4pI Equal (North(p), REJECT) = True;

East (West(p)) - 5p OR K (REJECT 6p);

North(West(p)) = West(North(sp) OR KPEECT (p);
South(West(p)) - West(South(5P) OR (R6JECT 6p);

PARTITION OF p IS
5pj Equal (West(p), REJECT) a False,

6pi Equal (West(p), REJECT) = True;

West (East(p)) - 7p OR KREJECT (Sp);

North(East(p)) = East(North(7p) OR KREJECT f8p);

South(East(p)) - East(South(7p) OR KRZJE.T (EP);

PARTITION OF p IS
7p1 Equal (East(p), REJECT) - False,

8pi Equal (East(p), REJECT) 3 True;

END PLACE;

* Figure 23: HOS Specification of Data Type PLACE:

Square-Coverings of the Plane

81

DATA TYPE: PLACE;

PRIMITIVE OPERATIONS:

place? - North(placel)

Place2 -South(placel)

place?. - NorthEast(placel)

place2 - NorthWest(Placel)

place2 -SouthEast(placel)

place2 SouthWest(placel)

AXIOMS:

WHERE p IS A PLACE

North(South(p)) - IP or KREJECT (2p);

NorthEast(South(p)) - SouthEast(lp) OR KREJECT(2p);

NorthWest(South(p)) = SouthWest(lp) OR KREJECT(2p);

SouthEast(South(p))= South(SouthEast(lp)) OR KREJECT(
2P);

SouthWest(South(p)) - South(SouthWest(lp) OR KREJECT (
2p);

PARTITION OF p IS

1p Equal (South(p), REJECT) - False

2p Equal (South(p). REJECT) =True

South(North~p)) -
3p or KREJECT (

4p)

NorthEast(North(p)) -North(NorthEast(
3p)) OR KREJECT (

4p)

NorthWest(North(p)) - North(North West(
3p)) OR KREJECT(4p)

SouthEast(North(p)) -NorthEast(
3p) OR KREJECT(4p)

SouthWest(North(p)) - NarthWest(3p) OR KREJECT(4p)

PARTITION OF p IS

3p Equal (North(p), REJECT) -False
4 Equal (North(p), REJECT) - True

North(NarthEast(p)) - NorthEast(North
5p)) OR KREJECT (

6p)

Soutth(NorthEast(p)) - SouthEast(
5p) OR KREJECT(

6p)

NorthWest(NorttIEast(p)) - North(5p) OR KREJECT(
6p)

SourthEast(NorthEast(p)) - NorthEast(SouthEast(
5p) OR

KREJECr!6D)

SouthWest(NorthEast(p)) -
5p OR KREJECTt

6p)

Figure 24: HOS Specification of Data Type Place: Hexagon-Coverings of the Plane

82 [

PARTITION OF p IS

Sp Equal (NorthEast(p), REJECT) - False
6p j Equal (NorthEast(p), REJECT) -True

North (NorthWest (p)) - NorthWest(North (7p) OR KREJECTF (8 0)

Saurth(NorthWest(p)) - SouthWest(7p) OR KREJECT(8P)

NorthEast(NorthWest(p)) - North(7p) OR KREJECT(8P)

SouthEast(4orthWest(p)) - 7p OR KREJECT(BP)

SouthWest(NorthWest(p)) - NorthWest(SouthWest(
7p)) Olt

KREJECT(SP)

PARTITION OF p IS

7pl Equal (Northwest(p), REJECT) z False

8p Equal (Northwest(p), REJECT) = True

North(SouthEast(p)) = NorthEast(9p) OR KREJECT(1%P)

South(SouthEast(p)) = SouthEast(South(9p)) OR KREJECT(30 P)

NorthEast (SouthEast (p)) = SouthEast (NorthEast (9p)) OR

KREJECT(10 P)

NorthWest(SouthEast(p)) c 9p OR KREJECT('OP)

SouthWest(SouthEast(p)) - South(9p) OR KREJECT(lOP)

PARTITION OF p IS

9pj Equal (SouthEast(p), REJECT) =False
lopj Equal (SouthEast(p), REJECT) =True

North(SouthWest(p)) - NorthWest(11 p) OR KREJECT(12P)

South(SouthWest(p)) - South(SouthWestC'1p)) OR KREJECTE22P)

NorthEast(SouthWest(p)) - Ilp OR KREJECT('2P)

NorthWest(SouthWest(p)) -SouthWest(NorthWest(Ilp)) OR

KRIECT(1
2p)

SouthEast(SouthWest(p)) -South (lip) OR KREJECT(12P)

PARTITION OF p IS

lip I Equal (SouthWest(p), REJECT) - False
l?pI Equal (SouthWest(p), REJECT) - True

ENO PLACE;

*Figure 24: HOS Specification of Data Type Place: Hexagon-Coverings of the Plane

83 I(Coa~tinued)

06n

I- Li

1L. 0. (

= 4-)

.0 r_ 4-3

S.-

4-' 0 C

CA In n %-.

4..- 0-

U- 4-)

to CA a 0 0
.0 4' *- 0 4-

L L

ID 0. 00

.00

0. .-

-~ 0.

4... U0

S..

V,)

LO

oi -j u L
S.. C)

Ii CDS..n

LL = LL% V - - 4'

11 CC cc - - 4'x
0. L- LL. -

00 5.. ci -

-*- II II 0

.0 1= t . A

w % 9LL. - 9- IL>-
3c 3c. C)

4n .. L LL) W.

.0O~ ~ S4

displacement square-coverings, on the one hand, and uniform-

displacement square-coverings and hexagon-coverings, on the other

hand, differ with respect to this structure only in that there are

four of these basic directions for the former and six for both of the

latter. This becomes relevant for an operation that decides whether an

input place is a border region in any of the basic directions. As

shown in Figure 26, the hexagon case is slightly more complex, though

essentially of the same form, because of the presence of the two addi-

tional directions.

Very different control maps would be required, however, for the

determination of the distances between places in the hexagon- and

null-displacement square-covering cases. To determine the distance

between two arbitrary places, we first determine their relative orien-

tations by sending out search rays from each place in each of the

basic directions until all intersections occur, and then counting the

number of places in each direction. As shown in Figure 27, all four

intersections produce the same count in the square case, but different

counts arise from the six intersections in the hexagon case.

Determining distance in the square case would thus involve a simple

application of the Pythagorean theorem, whereas determining distance

in the hexagon case requires the use of the appropriate version of the

law of cosines. If.x and y are the counts to an intersection, then

the distance d is given, in the square case, by d2 = x2 + y2, but in

the hexagon case, by d2 = x2 + y2 - xy or d2 = x2 + y2 + xy depending

on whether the angle opposite the d line is 600 or 1200. Determining

this angle for a chosen intersection is an important part of the

distance operation in the hexagon case that has no counterpart in the

square case.

85

- --

.0

C4C

06

r0.

T av

.00

w ~ go-
-00

.0.4

~ Z06

0.

x .2

.0 12 !2 C4 CL 0

J3 0. 9

o do

0 ~ ~ 86

4..

06

.00

0. 0 .

-at

1.0

-C(

aa

V A W .

,a u
0. 5C

La -

00

87~

.4w ___

4-

- s- I-

-~s - 7_ _

=. Cj
S0" 29L

_ _ _ _ _ _ _ _ a

I~...-- __ -88

(b) Six Intersections in the Hexagon'Case: Different Counts in
Each Case (Pairwise)

89

6,

REFERENCES

[1] Marr, D., "Representing Visual Information," MIT, AI Laboratory,
374, Memo No. 1, MIT, Cambridge, MA, 1976.

[2] Marr, D., "Artificial Intelligence - A Personal View," in
Artificial Intelligence 9 (1977), North-Holland.

[3] Marr, D. and Poggio, T. (1979), "A Computational Theory of Human
Steres Vision," in Proc. R. Soc., B. 204, pp. 301-328, London.

[4] Marr, D. and Ullman, S., (1979), Directional Selectivity and Its
Use in Early Visual Processing," MIT, AI Laboratory, Memo 524,
MIT, Cambridge, MA.

[5] Zadeh, L.A., "Fuzzy sets as a basis for a theory of possibility,"
Fuzzy Sets and Systems, Vol. 1, pp. 3-28, 1978, North Holland.

[6] Marr, D. and Nishihara, K., (1977), "Representation and Recognition
of the Spatial Organization of Three Dimensional Shapes," MIT Al
Laboratory, Memo 416, MIT, Cambridge, MA.

[7] Marr, see [8].

[8] Marr, D., VISION (1981) Freeman, S-F.

[9] Vaina, L., (1979), "Image Understanding Methods to Deal with
Uncertainty in Radar Image Analysis," Proc. New Orleans Workshop,
21-21 February 1980.

[10] Marr, D. and Vaina, L., (1980), "Representing Moving Shapes," MIT,
AI Laboratory Memo, MIT, Cambridge, MA.

[11] Bobrow, D. & Winograd, T., "An Overview of KRL, a Knowledge
Representation Language," Cogn. Science, pp. 13-45, 1977.

[12] Zadeh, L.A., "PRUF - A Memory representation language for
natural languages," Int. J. for Man-Machine Studies, Vol. 10,
pp. 395-460, 1978.

[13] Kotoh, K. & Thiramatsu, K., "A representation of pattern
classes using the fuzzy sets," Systems, Computers, Controls,
pp. 1-8, (1973).

[14] Vaina, L. & Greenblatt R., "The use of thread and memory in
anomia and childhood concept learning," MIT Al Laboratory, WP
196, MIT, Cambridge, MA., 1979.

91

i

[15] Vaina, L., "Towards a computational theory of semantic
memory," MIT Al Laboratory Memo. 456, MIT, Cambridge, MA., 1980.

[16] Henrix, G., Partitioned Smeantic Networks, Speech
Understanding Research 1976, SRI.

[17] Minsky, M.L., "A Framework for Representing Knowledge," in
Winston (ed.), The Psychology of Computer Vision, 1975.

[18] Vaina, L., Lecture logico - mathematique de la narration,
E.R.M.E., Paris, 1977.

[19] Gorice, P., "Logic and Converstation," U.P. Cole and J.L.
Morgan, "Syntax and Semantics": Speech Acts, Vol. 3, 1975.

[20] Collins, A. and Quillian, M., "Experiments on semantic memory and
language comprehension, Gregg, W., (ed.), "Cognition in learning
and memory," New York: Wiley, 1972.

[21] Rumelhart, D. and Norman, D., "Active Semantic Networks as a Model
of Human Memory."

[22] Lindsey, P.M. and Norman, D.A., "Human Information Processing," New
York. Academic Press, 1977.

[23] Norman, D.A., "Models of Human Memory," New York, Academic Press,
1979.

[24] Fahlman, NETL: "A System for Representing and Using Real World
Knowledge," MIT Press, Cambridge, MA., 1979.

[25] Zadeh, L., "Approximate Reasoning," UCCS - Berkley, Memo, 1977.

[26] Vaina, L. & Hintikka, J., (eds.), Cognitive Constraints on
Communication: Representations and Processes.
Reidel-Dordrecht, Holland (1981).

[27] Vaina, L., Semiotics of With, Versus(I).

[28] Binford, T. & Horn, B., "The Binford-Horn Line Finder," MIT, AI
Laboratory WP 16, Cambridge, MA., 1971.

[29] Roberts, L.G., Machine Perception of Three-Dimensional Solids,
in J.G. Tippet (ed.) Optical and Electro-Optical Inform.
Processing., pp. 159-197, MIT Press, Cambridge, MA., 1965.

[30] Winston, P., Learning structured descriptions from examples,
Winston, P. (ed.), The Psychology of Computer Vision, MIT
Press, Cambridge, MA., 1975.

92

[31) Falk, G., "Computer Interpretation of Imperfect Line Del? is a
Three Dimensional Scene" PG. Thesis, Al Memo 131, California, 1970.

[32) Cushing,S. "The Formal Semantics of Quantification," UCLA
Ph.D. dissertation, available from University Microfilms,
Ann Arbor, Michigan and Indiana University Linguistics Club,
Bloomington (1976).

[33) van Fraassen, B.C. Formal Semantics and Logic. New York:
The Macmillan Company-971).

[34) Cushing, S. "Semantic Considerations in Natural Language:
Crosslinguistic Evidence and Morphological Motivation,"
Studies in Language, 3,181-201 (1979).

[35] Stenning, K. "Articles, Quantifiers, and their Encoding in
Textual Comprehension," In Freedle, R.O. (ed.), Discourse
Production and Comprehension. Hillsdale, N.J.: Lawrence
Erlbaum Associates (1977).

[36] Cushing, S. "Lexical Functions and Lexical Decomposition: An
Algebraic Approach to Lexical Meaning," Linguistic Inquiry, 10,
327-345 (1979).

[37] Logan, B.F., Information in the Zero-Crossings of Bandpass
Signals. Bell System Technical Journal J6, (487-510), (1977).

[38] Marr, D. and Hildreth, E., Theory of Edge Detection. MIT AI
Laboratory Memo 518, (1979).

[39] Marr, Poggio and Ullman, Bandpass Channels, Zero-Crossings and
Early Visual Information Processing, J. Opt. Soc. Am. (in
press), (1980).

[40] Barcewell, The Fourier Transform and its Application, New York,
McGraw-HillT1965).

9 93

DAT

FILMI

